
Dense Crowd Counting Convolutional Neural Networks with Minimal Data

using Semi-Supervised Dual-Goal Generative Adversarial Networks

Greg Olmschenk1 Jin Chen2 Hao Tang3 Zhigang Zhu1,2

1The Graduate Center of the City University of New York
2The City College of New York - CUNY

3Borough of Manhattan Community College - CUNY

golmschenk@gradcenter.cuny.edu, jchen025@citymail.cuny.edu,

htang@bmcc.cuny.edu, zhu@cs.ccny.cuny.edu

Abstract

In this work, we generalize semi-supervised generative

adversarial networks (GANs) from classification problems

to regression for use in dense crowd counting. In the last

several years, the importance of improving the training of

neural networks using semi-supervised training has been

thoroughly demonstrated for classification problems. This

work presents a dual-goal GAN which seeks both to provide

the number of individuals in a densely crowded scene and

distinguish between real and generated images. This method

allows the dual-goal GAN to benefit from unlabeled data in

the training process, improving the predictive capabilities of

the discriminating network compared to the fully-supervised

version of the network. Typical semi-supervised GANs are

unable to function in the regression regime due to biases

introduced when using a single prediction goal. Using the

proposed approach, the amount of data which needs to be

annotated for dense crowd counting can be significantly

reduced.

1. Introduction

Every year, gatherings of thousands to millions occur

for protests, festivals, pilgrimages, marathons, concerts, and

sports events. For any of these events, there are countless

reasons to desire to know how many people are present. For

those hosting the event, both real-time management and fu-

ture event planning is dependent on how many people are

present, where they are located, and when they are present.

For security purposes, knowing how quickly evacuations can

be executed and where crowding might pose a threat to indi-

viduals is dependent on the size of the crowds. In journalism,

crowd sizes are frequently used to measure the significance

of an event, and systems which can accurately report on the

event size are important for a rigorous evaluation.

While GANs have already shown significant potential in

semi-supervised training, they have only been used for a lim-

ited number of cases. In particular, they have almost exclu-

sively been used for classification problems thus far. In this

work, we propose a dual-goal semi-supervised GAN for the

regression problem of dense crowd counting. Although the

switch from classification to regression may initially seem

to be a trivial extension, the nature of a GAN’s optimization

function results in a non-trivial obstacle. The discriminating

portion of the GAN must have the objective of labeling the

fake data from generating portion as fake. In a classification

semi-supervised GAN, an additional ”fake” class is added

to the possible list of classes. However, in regression, where

the data is labeled with real-valued numbers, deciding what

constitutes a ”fake” labeling is not straight forward. To avoid

this problem, we use a dual-goal GAN (DG-GAN) approach,

where the network outputs two labels: the desired regression

prediction and a real/fake classification.

This work presents three primary contributions:

1. A dual-goal GAN architecture allowing for semi-

supervised training for dense crowd counting.

2. An analysis demonstrating the improved accuracy when

using limited labeled data of the DG-GAN architecture

compared to an identical CNN architecture without the

generator component.

3. A series of experiments comparing the accuracy im-

provements gained by the DG-GAN using various quan-

tities of labeled and unlabeled examples.

The remainder of this work is structured as follows. First,

we provide related work on semi-supervised GANs and

dense crowd counting in Section 2. Next, we detail the

optimization goals and architecture of the DG-GAN and

1 21



Figure 1: The structure of a basic GAN. Real and fake

images are fed to a discriminator network, which tries to

determine whether the images are real or fake. The fake

images are produced by a generator network.

explain the experimental setup in Section 3. Afterward, the

results of our experiments and an analysis of them are pro-

vided in Section 4. Finally, we provide some closing remarks

in Section 5.

2. Background and Related Work

A Generative Adversarial Network (GAN) [3] consists

of two neural networks which compete against one another.

One of the networks generates fake data; hence it is typi-

cally called the generator. The other network attempts to

distinguish between real data and the fake generated data;

consequently, this network is called the discriminator. Both

networks are trained together, each continually working to

outperform the other and adapting in accordance to the other.

Though GANs are now fairly common, to provide s

groundwork understanding for our DG-GAN, it is worth

revisiting the details of a GAN from the viewpoint of proba-

bility distributions. Although the GAN approaches can be

used for any prediction application, to give a concrete under-

standing, these explanations are given in terms of computer

vision problems, specifically where the datasets consist of

individual images. This means an example of real data (and

thus the input of the discriminator) is an image, and the out-

put of the generator is likewise an image. The overarching

structure of a GAN can be seen in Figure 1.

The generator network takes random noise as input (usu-

ally a vector with each value sampled from a normal distribu-

tion) and outputs a generated image. The discriminator takes

as input images and outputs a binary classification of either

fake or real data. Images can be represented by a vector, with

each element representing the value of a pixel in the image1.

1One element per pixel is in the case of grayscale images. For RGB

images, there will be three elements in the vector for each pixel, one for

In any image, each element of this vector has a value within a

certain range representing the intensity of that pixel. For this

explanation, we will state the minimum element value (pixel

value) as being 0, and the maximum as being 1. Of course,

this vector can be represented as a point in N dimensional

space, where N is the number of elements in the vector. The

possible positions of an image’s point are restricted to the

N dimensional hypercube with a side length of 1. Here, it

is important to note that real-world images are not equally

spread throughout this cube. That is, most points in the cube

correspond to images that would look like random noise to a

human. Images from the real world usually have properties

like local consistency in both texture and color, the logical

relative positioning of shapes, etc. Real world images lie on

a manifold within the cube [2]. Subsets of real-world images,

such as the set of all images containing a dog, lie on yet a

smaller manifold. This manifold represents a probability

distribution of the real world images. We can view the real

world as a data generating probability distribution, with each

position on the manifold having a certain probability based

on how likely that image is to exist in the real world.

The goal of the generator is then to produce images which

match the probability distribution of the manifold as closely

as possible. Input to the generator is a point sampled from

the probability distribution of (multidimensional) random

normal noise, and the output is a point in the hypercube–an

image. The generator is then a function which transforms a

normal distribution into an image data distribution. Formally,

pfake(x) = G(N ) (1)

where G represents the generator function, x is a random

variable representing an image, N is the normal distribution,

and pfake(x) is the probability distribution of the images

generated by the generator. The desired goal of the generator

is to minimize the difference between the generated distribu-

tion and the true data distribution. One of the most common

metrics to minimize this difference is the Kullback-Leibler

(KL) divergence between the generator distribution and the

true data distribution using maximum likelihood estimation.

This is done by finding the parameters of the generator, θ,

which produce the smallest divergence,

θ
∗ = argmin

θ

DKL(preal(x) ‖ pfake(x;θ)). (2)

To find this set of parameters, each of the discriminator and

the generator works toward minimizing a loss function. For

the discriminator, the loss function is given by

LD = −Ex∼preal(x)[logD(x)]

−Ex∼pfake(x)[log(1−D(x))]
(3)

and the generator’s loss function is given by

Lfake = −Ex∼pfake(x)[log(D(x))]. (4)

each color channel of the pixel.

22



Figure 2: The structure of a semi-supervised GAN. Both

labeled and unlabeled real images, as well as fake images,

are fed to a discriminator network, which tries to determine

which class each image belongs to (K real classes and one

fake class). The discriminator wishes to label images from

the generator as belonging to a special ”fake” class.

In the case of image data, this approach has led to gener-

ative models which can produce realistic looking images

reliably [7].

For a semi-supervised classification GAN, both a labeled

and an unlabeled dataset is used, and in addition to distin-

guishing between real and fake, the discriminator also tries

to label a real input data sample into one of the given classes.

The primary goal of this type of GAN is to allow the discrim-

inator’s prediction task to be trained with relatively small

amounts of labeled data using unlabeled data to provide the

network with additional information. As unlabeled data is

usually much easier to obtain than labeled data, this provides

a powerful means to reduce the requirements of training

neural networks. This semi-supervised GAN structure can

be seen in Figure 2.

Where in a simple GAN the discriminator would be

passed true examples and fake examples, in the semi-

supervised GAN the discriminator is given true labeled ex-

amples, true unlabeled examples, and fake examples. We

can better understand why this is useful by considering the

case of image classification. In this case, the discriminator

is being trained to predict the correct class of a true image,

which can be one of the K classes that exist in the dataset.

The discriminator is given the additional goal of attempting

to label any fake images with a K + 1th class, which only

exists to label fake data (i.e., does not exist in the true label

dataset). For the case of unlabeled, all we know is that it

must belong to one of the first K classes, as the K + 1th

class does not exist in the real data. The discriminator is

then punished for labeling true unlabeled data as the K+1th

class. This is useful because the discriminator cannot simply

overfit to the labeled data, as it still has to accommodate for

the unlabeled data. At the same time, the fake data prevents

the discriminator from allowing simple features to be the de-

ciding factor, as the generator is able to produce such simple

features.

To understand what is happening in this semi-supervised

learning more intuitively, we can imagine the extreme case

of an ideal discriminator and generator. The generator would

have to have learned to produce data which exactly matches

the true data distribution. For this to happen, the discrimina-

tor must have forced the generator to learn this (as the gener-

ator’s training is entirely dictated by backpropagation from

the discriminator), meaning the discriminator too ”knows”

exactly the data distribution. If there were any difference

between the true and generated image distributions, the dis-

criminator could use this to distinguish between real and

fake, and then the generator could still be trained further

toward producing a match of the true distribution.

Viewing this from the perspective of the manifold in data

space again, there are few labeled data points and many un-

labeled data points which must lie on the manifold. The

manifold has different regions (or even separate manifolds)

for each class, but even the unlabeled data has to lie some-

where on the manifold. As the discriminator trains, it learns

how to segment the data points into categories. To do this,

it creates a mapping from a predictive manifold to a class,

with the training warping the manifold to contain each of the

data points for that class. At the same time, the generator

prevents the manifold from warping too severely to reach

data points in arbitrary ways. Intuitively, this is because

severely warping the manifold to reach true data points can

result in the manifold stretching into the area which does

not represent true images. The generator acts a pressure on

the manifold to reduce this. By generating images near the

manifold, the generator forces the discriminator’s manifold

not to wander into areas that don’t contain real images. In

this sense, the generator is a form of regularization for the

discriminator, but one which is based on real-world data.

As originally formulated by [8], the discriminator loss

function is then defined by

LD = Lsupervised + Lunsupervised (5)

Lsupervised =

− Ex,y∼plabeled(x,y)log[pmodel(y | x, y < K + 1)]
(6)

Lunsupervised =

− Ex∼punlabeled(x)log[1− pmodel(y = K + 1 | x)]

− Ex∼pfake
log[pmodel(y = K + 1 | x)].

(7)

As for the generator, the first option for a loss function is

the straight forward one which aims to have the discriminator

23



label the fake images as from real classes. Specifically,

LG = −Ex∼pfake
log[pmodel(y < K + 1 | x)]. (8)

Since their development, semi-supervised GANs have

been used to improve training in many areas of classification,

including digit classification [12, 13, 8], object classifica-

tion [12, 13, 8], facial attribute identification [13], and image

segmentation (per pixel object classification) [11].

3. Methodology

3.1. Semisupervised DualGoal Regression GAN

While semi-supervised GANs have been highly success-

ful in training to reduce data requirements for classification

problems, the approach does not directly translate to regres-

sion problems, such as dense crowd counting. This is due to

the requirement of a fake class being added to the possible

classifications. In regression problems, the label spans real

numbers rather than discrete classes. Furthermore, choosing

a specific number or range of numbers to represent a fake

label introduces bias to the system. For example, in the case

of crowd counting, negative numbers could be chosen to

represent a fake label. However, we can imagine an extreme

case where the generator and discriminator train to perfect.

If the generator is able to produce images which exactly

match those from the real distribution, then the best value for

the discriminator to pick would be half value of the number

of people in the image. This is because if the image was

real, the correct count should be picked. If the image was

fake, a negative number should be selected. Since we are

assuming the generator can produce images which match the

real distribution, the minimal discriminator loss will come

from predicting a middle value. Even though the generator

will never train to this level of perfection, this effect results

in a significant overall bias nonetheless.

Our solution to the above issue is a semi-supervised dual-

goal GAN (DG-GAN). This GAN requires the discriminator

to provide two separate outputs: the desired regression value

and a classification of whether the input example is part of

the real or generated distribution. The approach does not

present a bias in the regression value prediction but forces

the network to share parameters for the prediction of whether

or not the example is real.

Formally, the objective of the discriminator in our DG-

GAN is then given by,

LD = Lsupervised + Lunsupervised (9)

Lsupervised = Ex,ys∼pdata(x,y)[(D(x)− ys)
2] (10)

Lunsupervised =

− Ex∼punlabeled(x)log[1− pmodel(yu = K + 1 | x)]

− Ex∼pfake
log[pmodel(yu = K + 1 | x)],

(11)

Figure 3: The structure of a semi-supervised dual-goal GAN.

A regression label is predicted alongside a binary real/fake

classification label. This structure allows for improved accu-

racy through semi-supervised training while preventing the

bias that can be introduced by more naive methods.

where ys is the supervised regression label, and yu is the

unsupervised real/fake binary classification label.

The generator is trained to optimize the likelihood that the

generated images are considered real by the discriminator.

LG = −Ex∼pfake
log[pmodel(yu < K + 1 | x)]. (12)

This combination of supervised regression and unsuper-

vised classification forces the discriminator to learn more

robust features of crowd images, enabling it to perform well

even with limited labeled training data. Equation (10) pro-

vides a standard mean squared error loss function allowing

the discriminator to improve the regression prediction, and

no other loss directly competes for to alter this value. Instead,

the unsupervised loss acts as a form of regularization based

on the real distribution of images. This forces the discrim-

inator to function well even on the unlabeled images, and

learn to recognize more robust patterns to avoid generated

images. This overall model structure is shown in Figure 3.

The generator portion of the network and the real/fake

binary classification goal is only used when training the

DG-GAN. During test evaluation, only the discriminator

portion of the DG-GAN is used. In our experiments, the

discriminator of the DG-GAN is identical to the CNN we

compare against. This helps to focus the results on the

benefits of the DG-GAN training method as opposed to the

CNN/discriminator network architecture details.

24



3.2. Experimental Setup

For our experiments, we used the UCF-QNRF dataset [6].

This dataset contains 1535 total images split as 1201 training

images and 334 testing images. These training and test-

ing distributions are provided by the dataset provider. The

dataset contains 1,251,642 total head count, with a median

of 425 (per image), and a mean of 815.4. To the best of our

knowledge, the UCF-QNRF dataset is currently the largest

dataset in terms of the number of head counts. With a mini-

mum of 49 and a maximum of 12,865, the dataset contains an

enormous variety of crowd density levels. Furthermore, the

camera perspective angles range drastically from near paral-

lel to ground level to nearly perpendicular with the ground.

Lighting conditions, environmental scenes, pixel size of indi-

viduals, and levels of occlusion are similarly widely varied.

Typical example images from the dataset are shown in Fig-

ure 4. The UCF-QNRF dataset provides a challenging and

extensive dataset for dense crowd counting.

Images in the UCF-QNRF vary widely in resolutions. Our

network accepts image patches of 224×224. The network is

trained to predict the number of head counts within random

training image patches. During the test phase, an overlapping

sliding window is used to make a prediction of the number

head counts in each patch of the image. Overlapping values

are averaged, and the final prediction for an image under is

given by the sum of these values.

[6] showed that a standard DenseNet [4] architecture was

able to outperform many application-specific networks [9,

10, 1, 15] for crowd counting. Though [6] also provides an

extended application specific version of DenseNet, we chose

to use the original version of DenseNet201 as the discrimi-

nator in our experiments. This simplifies the repeatability of

the experiment while still providing a network comparable

to the state-of-the-art in terms of accuracy. This network

structure is shown in Table 1 For the generator, we use the

generator architecture from the well-known DCGAN [7].

This generator has been shown to function well on a wide

variety of applications. The details of our generator architec-

ture are shown in Table 2.

For each experiment, we use the discriminating CNN

network with and without the generator. Of course, the

binary classification goal of real/fake is only included in

the case which includes the generator. This compares the

standard CNN network against the identical network, with

the only changes being the inclusion of the generator feeding

data to the CNN and the real/fake prediction goal. This

allows us to isolate the value of the DG-GAN compared to

the CNN without placing undue importance on the details of

the CNN/discriminator architecture.

Experiments with a greater number of labeled training im-

ages include all images used by experiments with a smaller

number of labeled training images. That is, the experiment

using 20 labeled images includes all labeled images in the

Layers Output Size Filter Types

Convolution 112 × 112 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2

Dense Block

(1)
56 × 56

[

1 × 1 conv

3 × 3 conv

]

× 6

Transition

Layer (1)

56 × 56 1 × 1 conv

28 × 28 2 × 2 average pool, stride 2

Dense Block

(2)
28 × 28

[

1 × 1 conv

3 × 3 conv

]

× 12

Transition

Layer (2)

28 × 28 1 × 1 conv

14 × 14 2 × 2 average pool, stride 2

Dense Block

(3)
14 × 14

[

1 × 1 conv

3 × 3 conv

]

× 48

Transition

Layer (3)

14 × 14 1 × 1 conv

7 × 7 2 × 2 average pool, stride 2

Dense Block

(4)
7 × 7

[

1 × 1 conv

3 × 3 conv

]

× 32

Regression

Layer
1 × 1 7 × 7 average pool

Table 1: The discriminator architecture based on

DenseNet201. The growth rate for the filters is k = 32
(which defines the number of channels per DenseNet201

specifications). Each convolution is followed by a leaky

ReLU, except the final convolution.

Layers Output Size Output Filters

Transposed

Convolution (1)
14 × 14 512 features

Transposed

Convolution (2)
28 × 28 256 features

Transposed

Convolution (3)
56 × 56 128 features

Transposed

Convolution (4)
112 × 112 64 features

Transposed

Convolution (5)
224 × 224 3 features

Table 2: The generator architecture based on DCGAN. Each

layer is followed by a leaky ReLU, except the final layer

which is followed by a Tanh.

experiment using 10 labeled images. This ensures that in-

creased accuracy in one experiment is the result of increased

25



Figure 4: Typical examples of crowd scene images from the UCF-QNRF dataset with various levels of densities, illuminations,

and distributions.

available labeled data rather than due to the random selection

of training data. The CNN and DG-GAN are trained with

the same labeled images in all cases. The data selected for

training is randomly sampled from the entire UCF-QNRF

training dataset. This random sampling is seeded for repeata-

bility.

All code and hyperparameters are given at https://

github.com/golmschenk/sr-gan.

4. Results

For each of our experiments, we provide the mean ab-

solute error (MAE), normalized absolute error (NAE), and

root mean squared error (RMSE). These are given by the

following equations:

MAE =
1

N

N
∑

i=1

∣

∣

∣
Ĉi − Ci

∣

∣

∣
(13)

NAE =
1

N

N
∑

i=1

∣

∣

∣
Ĉi − Ci

∣

∣

∣

Ci

(14)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Ĉi − Ci)2 (15)

MAE and RMSE tend to be the standard metrics of interest

within the dense crowd counting community. [6] recently

introduced NAE to capture the degree of miscount relative

to the person count for each image. This tends to empha-

size images with smaller counts more than the other two

measures. We note that the supervised loss of the network

uses the RMSE. This is a commonly used supervised loss

function. However, it does not directly train to optimize

NAE, as such, this measure tends to be less consistent. For

all experiments, the evaluations given are for the test dataset

as designated by the dataset provider.

In all experiments, the network architecture of the CNN

and the discriminator are identical. Notably, these are the

only portions of the network used during evaluation of the

test data (the generator is only used during training). This em-

phasizes the value gained by the DG-GAN training method

rather than the architecture of the inference network.

The first set of experiments uses a limited set of labeled

training images. The unlabeled training images consist of

any available training image not included in the labeled set,

resulting in a number of unlabeled images being 1201 minus

the number of labeled images. The results from this set of

experiments are shown in Table 3.

We see from this set of experiments that the DG-GAN

significantly outperforms the CNN in every case for MAE

and RMSE. NAE results are less consistent. For MAE, the

DG-GAN often outperforms the CNN even when it uses

two or four times as much data. For example, the DG-

GAN using 80 labeled examples significantly outperforms

the CNN using 320 labeled examples. In some cases, the

difference is less significant, such as when 40 examples were

used. However, the model with the simple addition of the

generator and the losses to the CNN always outperforms the

ordinary CNN. Similarly, the RMSE of the DG-GAN always

outperforms the CNN using the same amount of data. These

results mirror the MAE case, with the DG-GAN with 80

labeled examples once again outperforming the CNN using

320 labeled examples.

The second set of experiments consists of using both a

limited number of labeled examples and a limited number of

unlabeled examples. In particular, each experiment uses ten

26



MAE RMSE NAE

Labeled examples CNN DG-GAN CNN DG-GAN CNN DG-GAN

10 422.9 303.0 705.2 504.0 0.5369 0.5136

20 390.1 293.4 643.6 474.5 0.7076 0.4917

40 285.0 259.8 487.2 391.1 0.4823 0.5452

80 260.2 197.8 432.4 305.2 0.4853 0.3512

160 237.4 194.8 385.4 295.2 0.4735 0.4003

320 227.6 186.9 362.4 298.7 0.4228 0.3237

Table 3: Results using varying levels of labeled training examples and using all remaining training examples as unlabeled data.

In each experiment, the CNN and the discriminator network architectures are identical.

Examples MAE RMSE NAE

Labeled Unlabeled CNN DG-GAN CNN DG-GAN CNN DG-GAN

10 100 422.9 332.1 705.2 531.3 0.5369 0.5694

20 200 390.1 295.7 643.6 461.3 0.7076 0.6082

30 300 323.3 279.2 525.2 416.0 0.5878 0.6394

40 400 285.0 259.4 487.2 416.3 0.4823 0.4664

50 500 277.4 230.9 489.2 372.8 0.4881 0.4566

Table 4: Results using varying levels of labeled training examples and ten times as many unlabeled examples. In each

experiment, the CNN and the discriminator network architectures are identical.

times as many unlabeled examples as labeled examples. The

results from this set of experiments are shown in Table 4.

The readers may compare Table 3 and Table 4 for the perfor-

mance of under the same numbers of labeled examples (e.g.,

10, 20, and 40) but with different numbers of unlabeled ex-

amples (e.g., 1201-10 compared to 100, 1201-20 compared

to 200, 1201-40 compared to 400). It should be noted, the

greatest number of labeled examples used in this set of exper-

iments is far smaller than in the previous set of experiments.

This is due to the limited total dataset size (large numbers

of labeled examples would not have sufficient proportional

amounts of unlabeled examples to train with).

Once again, this set of experiments clearly show the ad-

vantage of adding the generator and DG-GAN to the original

CNN. In every case, the MAE and RMSE of the DG-GAN

significantly outperform the CNN, often even versions of

the CNN with more data. For example, the DG-GAN with

20 examples achieves an MAE which outperforms the CNN

with 30, 40, and 50 labeled examples.

4.1. Discussion

Using the DG-GAN, we can significantly increase the

performance of the CNN. The only changes made to the net-

work structure are the addition of the generator and the ad-

ditional output to provide the real/fake binary classification

loss. Although this increases the training time significantly,

the benefits of increased accuracy justify additional training.

The second set of experiments verifies that the benefit of

the DG-GAN does not require enormous unlabeled datasets

relative to the size of the labeled dataset, while the first set of

experiments shows what can be obtained using all available

unlabeled images for varying sizes of labeled images.

The second set of experiments shows that even with a

much lower number of unlabeled examples the DG-GAN

still provides a significant benefit. For 10 labeled examples

and 100 unlabeled examples, the DG-GAN has resulted in

a significant accuracy increase. However, additional insight

can be gleaned by comparing the two tables of experiments.

The DG-GAN using 10 labeled examples and 1191 unlabeled

examples provides a more significant benefit to the DG-GAN.

This demonstrates that the DG-GAN can benefit from large

amounts of unlabeled data. Notably, in a real use case,

unlabeled data is extremely easy to obtain (more pictures

simply need to be taken), while labeled data is extremely

costly to produce.

5. Conclusions and Future Work

This work provided the DG-GAN model, a means by

which semi-supervised dense crowd counting networks can

be trained. We’ve shown the method significantly improves

the performance of a CNN with limited data training with

27



the UCF-QNRF dataset. Equivalently, the DG-GAN can

train to the same level of accuracy as its counterpart CNN

using far less labeled data.

While this already convincingly demonstrates the effec-

tiveness of the DG-GAN, there are several ways we intend

to expand the outcomes of this work. Most notably, simi-

lar experiments will be performed on additional well-known

datasets such as the ShanghaiTech dataset [15], the UCF-CC-

50 dataset [5], and the World Expo dataset [14]. However,

these datasets have a more limited number of training images,

restricting how varied the dataset sizes can be. Furthermore,

the UCF-QNRF dataset provides one of the most diverse

sets of images available. The remaining extension of this

work is to provide a more complete analysis of the number

of examples required for both labeled and unlabeled datasets

to achieve various comparable levels of accuracy.

While these additional experiments will more thoroughly

define the capabilities and limitations of the DG-GAN, the

results in Section 4 already establish the unmistakable poten-

tial for the DG-GAN for use in dense crowd counting.

6. Acknowledgments

This research is supported by the National Science Foun-

dation via awards #CNS-1737533 and #IIP-1827505, and by

Bentley Systems, Inc., through a CUNY-Bentley Collabora-

tive Research Agreement (CRA).

References

[1] V. Badrinarayanan, A. Kendall, and R. C. SegNet. A deep

convolutional encoder-decoder architecture for image seg-

mentation. arXiv preprint arXiv:1511.00561. 5

[2] C. Fefferman, S. Mitter, and H. Narayanan. Testing the man-

ifold hypothesis. Journal of the American Mathematical

Society, 29(4):983–1049, 2016. 2

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio. Generative

adversarial nets. In Advances in neural information process-

ing systems, pages 2672–2680, 2014. 2

[4] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In CVPR, vol-

ume 1, page 3, 2017. 5

[5] H. Idrees, I. Saleemi, C. Seibert, and M. Shah. Multi-source

multi-scale counting in extremely dense crowd images. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2547–2554, 2013. 8

[6] H. Idrees, M. Tayyab, K. Athrey, D. Zhang, S. Al-Maadeed,

N. Rajpoot, and M. Shah. Composition loss for counting, den-

sity map estimation and localization in dense crowds. arXiv

preprint arXiv:1808.01050, 2018. 5, 6

[7] A. Radford, L. Metz, and S. Chintala. Unsupervised represen-

tation learning with deep convolutional generative adversarial

networks. arXiv preprint arXiv:1511.06434, 2015. 3, 5

[8] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training gans. In

Advances in Neural Information Processing Systems, pages

2234–2242, 2016. 3, 4

[9] D. B. Sam, S. Surya, and R. V. Babu. Switching convolutional

neural network for crowd counting. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, volume 1, page 6, 2017. 5

[10] V. A. Sindagi and V. M. Patel. Cnn-based cascaded multi-task

learning of high-level prior and density estimation for crowd

counting. In Advanced Video and Signal Based Surveillance

(AVSS), 2017 14th IEEE International Conference on, pages

1–6. IEEE, 2017. 5

[11] N. Souly, C. Spampinato, and M. Shah. Semi and weakly su-

pervised semantic segmentation using generative adversarial

network. arXiv preprint arXiv:1703.09695, 2017. 4

[12] J. T. Springenberg. Unsupervised and semi-supervised learn-

ing with categorical generative adversarial networks. arXiv

preprint arXiv:1511.06390, 2015. 4

[13] K. Sricharan, R. Bala, M. Shreve, H. Ding, K. Saketh, and

J. Sun. Semi-supervised conditional gans. arXiv preprint

arXiv:1708.05789, 2017. 4

[14] C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd

counting via deep convolutional neural networks. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 833–841, 2015. 8

[15] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Single-

image crowd counting via multi-column convolutional neural

network. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 589–597, 2016. 5, 8

28


